ДЫМ — пылегазовая смесь, состоящая из мельчайших твердых частиц, взвешенных в газовой среде и подвергающихся диффузии в атмосферном воздухе. В зависимости от состава Д. может неблагоприятно воздействовать на организм человека.

Д.— типичный аэрозоль с размером твердых частиц от 10-7 до 10-5 см. Частицы Д. могут служить ядрами конденсации атмосферной влаги — в результате возникает туман.

Электронограммы частиц некоторых видов дымов: 1 — кристаллические частицы дыма окиси магния; 2 — кристаллические частицы дыма окиси цинка; 3 — частицы дыма, образовавшиеся в результате конденсации паров алюминия; 4 — частицы дыма окислов ванадия в виде кристаллов; 5 — частицы дыма сажи в виде цепочек и хлопьев; 6 — частицы дыма алюминия в виде цепочек.

Мельчайшие частицы Д. находятся в постоянном броуновском движении, что обусловливает их соударение и слипание — коагуляцию при столкновении твердых частиц и конденсацию при слиянии жидких частиц. Коагуляция возрастает при увеличении турбулентности воздушных потоков, наличии разноименных зарядов частиц, оседании укрупненных частиц вследствие увеличения их массы и слипания с частицами нижних слоев газовой среды. Общая сумма поверхностей частиц Д. очень велика и потому велика их физ.-хим. активность: они легко вступают во взаимодействие между собой, с газами среды, чему способствуют определенные метеорол, условия и особенно солнечная радиация. При этом происходят реакции окисления, восстановления, разложения, синтеза, кристаллизации и др. На рисунке даны электронные микрофотографии нескольких видов Д., на которых видны отдельные мельчайшие частицы Д., кристаллы различной величины и формы, крупные частицы пыли и конгломераты, возникшие при слипании частиц.

Механизм фотохим. и термических реакций, происходящих в атмосферных Д., очень сложен и требует углубленных исследований. Установлено, что в результате разложения паров и окислов азота, серы, углерода, металлов, углеводородов образуется озон и ряд сильных окислителей — фотооксидантов с последующей деструкцией веществ и образованием новых соединений. Д. сложного состава называют «смог». Этот термин происходит из сочетания двух англ. слов (smoke дым и fog туман). Применяют также термин «токсические туманы», говоря о гигантских скоплениях Д., тумана и ядовитых газов, несущих ионы тяжелых металлов, сажу, канцерогенные углеводороды. Так, напр., в калифорнийских смогах были обнаружены цинк, барий, ртуть, хром, мышьяк, ванадий, многочисленные металлорганические соединения и особенно много соединений свинца, образовавшегося из выхлопных газов автотранспорта при сгорании этилированного бензина.

В сельском хозяйстве атмосферные Д. образуются при работе различных машин, автотранспорта, при внесении удобрений с помощью авиации, при борьбе с вредителями растений. В быту Д. выделяется при сгорании топлива, мусора, от газовых горелок, при курении.

Различают Д. атмосферные, промышленные, военного назначения, бытовые, дезинфицирующие. Однако такое деление условно, т. к., напр., промышленный и бытовой Д. участвуют в формировании атмосферного.

Д., выделяющийся при сгорании топлива в бытовых и промышленных печах, состоит гл. обр. из сажи, сернистого ангидрида, смолы, золы, а также небольших количеств металлических загрязнений. Состав Д. меняется в значительных пределах и зависит как от вида топлива, так и от способа его сжигания.

Вредное влияние Д. на организм человека, животных, зеленые насаждения, строения и материалы и т. д. разнообразно и зависит от состава Д. Токсическими называют промышленные Д. и Д. военного назначения. Отдельные виды Д. оказывают раздражающее, канцерогенное действие .

Механизм действия Д. на организм связан с высокой дисперсностью частиц, способных проникать в альвеолы, а затем и в любые органы и системы. Частицы Д. оседают также на слизистых оболочках дыхательных путей и частично вместе со слизью и слюной проникают в органы пищеварения. Д. может воздействовать на слизистые оболочки глаз и на кожу. Наиболее выраженным действием могут обладать промышленные Д., отличающиеся разнообразным составом и образующиеся при различных термических и хим. процессах: горении, плавлении, сварке и др.

В СССР интерес к Д. возник в годы первой пятилетки в связи с требованием охраны здоровья населения от возможных воздействий атмосферных загрязнений в период индустриализации страны, ростом числа мощных промышленных предприятий и новых городов. Работы по изучению Д. были проведены В. А. Рязановым в начале 30-х гг., а затем им, его последователями и учениками были даны обоснования для выбора промышленных площадок под строительство городов и поселков. В послевоенные годы развернулись исследования по обоснованию ПДК различных видов атмосферных загрязнений и их комплексов, в т. ч. ингредиентов Д. от отопительных устройств, транспорта и промышленных объектов различных отраслей промышленности.

Наибольшее значение имеют атмосферные Д., количество которых постоянно возрастает в связи с ростом промышленности, транспорта городов и индустриализацией сельского хозяйства. Особое внимание к атмосферным Д. было привлечено после массового отравления людей в 1930 г. в Бельгии, где Д. от промышленных предприятий в результате температурной инверсии (см.) способствовал образованию густого тумана с резким запахом сернистого газа. У людей заболевания органов дыхания со смертельными исходами регистрировались при аналогичных температурных инверсиях в Англии (1948, 1952, 1956), в США, Мексике и ряде других стран. Большое значение приобретает всевозрастающее загрязнение атмосферного воздуха (см.) автотранспорта.

В ряде крупных городов мира в 60-х гг. плотность Д. снизилась на 10—20% в результате ограничения использования твердого дымообразующего топлива, но одновременно возросло содержание в Д. ряда соединений, участвующих в образовании фотооксидантов. Так, в Нью-Йорке среднегодовые концентрации сернистого газа в атмосфере увеличились с 0,56 до 0,84 мг/м3, в Иокогаме возросли вдвое. Уровень содержания сернистого газа в воздухе Москвы в тот же период снизился почти на 2/3 в результате использования природного газа в качестве основного топлива. Сернистый газ — один из самых весомых оксидантов, оказывающих вредное воздействие на здоровье людей. По данным ВОЗ, при среднесуточном содержании сернистого газа в количестве более 500 мкг/м3 воздуха отмечается повышение смертности и заболеваемости, а при концентрации в интервале 500—250 мкг/м3 ухудшается здоровье лиц с заболеваниями легких. При среднегодовых концентрациях этого вещества в атмосфере в количестве 100 мкг/м3 у населения отмечались различные симптомы поражения органов дыхания, а при содержании 80 мкг/м3 — раздражение слизистых оболочек.

Основным направлением работ по профилактике вредного воздействия Д. является совершенствование технол. процессов, улавливание и утилизация промышленных Д., создание замкнутых технол. циклов, безотходных производств, а также дожигание или нейтрализация выбросов автотранспорта. Концентрация металлургических и хим. производств позволила утилизовать вредные выбросы Д. путем переработки сернистого газа в серную к-ту, использовать выбросы окислов азота на заводах азотно-туковой промышленности.

Подобные технол. мероприятия, широко внедряемые в СССР, являются наиболее эффективными для предотвращения поступления Д. в атмосферу. Существуют различные методы и способы очистки выбросов Д. в атмосферу от взвешенных и газообразных веществ. Напр., механические — пылеотстойные камеры, циклоны, мультициклоны, жалюзийные золоуловители и др.; мокрая газоочистка — различные скрубберы, циклоны, пенные газопромыватели и др.; фильтры — тканевые рукавные, шпагатные рамы, ткани из искусственных волокон; электрофильтры и др.

Повсеместно осуществляется также очистка Д. от наиболее вредных газов. Так, сернистый газ улавливается водой, раствором соды, известковым молоком и др.

Сероводород улавливается сухим методом — гидроокисью железа или активированным углем, а также мокрым — щелочно-мышьяковым раствором, этаноламином и др. Хлористый и фтористый водород улавливаются водой в орошаемых скрубберах и др. Органические растворители с помощью конденсационных, компрес-сиоиных или сорбционных методов улавливаются часто и для рекуперации, т. е. для возвращения растворителей в производственный процесс.

Очистка Д. от твердых, газообразных и парообразных загрязнителей имеет большое значение для охраны здоровья населения.

См. также,.

Дымы военного назначения

Дымы военного назначения находятся на вооружении многих армий. Некоторые из них широко использовались в период первой и второй мировых войн, а также в войне в Корее и во Вьетнаме.

Д. военного назначения условно можно разделить на следующие группы: ядовитые и нейтральные.

Ядовитые дымы создаются гл. обр. на базе ОВ слезоточивого и раздражающего действия (хлорацетофенона , бромбензилцианида, адамсита, динитрила ортохлорбензальмалоновой к-ты и др.), а также их смесей (см.); ОВ этой группы характеризуются высокой температурой кипения и низкой летучестью. С помощью их практически нельзя создать поражающие концентрации паров. Формой боевого применения их является Д., предназначенных! для заражения приземного слоя атмосферы. Надежной защитой от ядовитых Д. служит современный противогаз.

Нейтральные дымы — группа Д. различного назначения: маскировочные и сигнальные.

Маскировочные Д. служат для создания дымовых завес. Различают маскируюнще дымовые завесы для прикрытия действия своих войск и так наз. ослепляющие — для затруднения боевых действий противника. Дымовые завесы первого типа создаются в расположении своих войск или перед их позициями, а второго — в р-не противника. Дымовые завесы должны быть достаточно устойчивыми, т. е. длительное время держаться в воздухе, не оседая и не разрушаясь, а также обладать хорошей кроющей способностью. Кроющая способность дыма (D) может быть вычислена из соотношения

D = 1/L, где L — толщина слоя дыма, делающая невидимым свет эталонной лампы.

Наиболее распространены следующие рецептуры дымообразующих веществ:

1. Смеси на основе фосфора — чаще всего используется технический белый фосфор, являющийся наилучшим дымообразующим веществом. Так, из 1 вес. ч. фосфора при 75% влажности воздуха образуется 7 вес. ч. аэрозоля. Работа с фосфором представляет известную опасность (см.).

2. Смесь, состоящая из хлористого аммония и антрацена, хлората калия и древесного угля,— в результате горения наблюдается возгонка и диссоциация хлористого аммония и возгонка антрацена. Д., образованный подобной смесью, состоит из капелек р-ра хлористого аммония в воде и твердых частичек антрацена, смешанных с воздухом. Д. практически безвреден для человека и не разрушает металлы и ткани.

3. Смеси на основе нефтепродуктов могут быть изготовлены из различных марок дизельного топлива, мазута, солярового масла. Испаряясь в токе нагретых газов, они при охлаждении дают устойчивое облако дыма. Д. токсичностью не обладает.

4. В состав смесей на основе хлоридов металлов входят порошкообразные металлы (напр., алюминий, цинк, окислы железа), полигалоидные углеводороды (напр., гексахлор-этан, гексахлорбензол, дихлоран). Горение вызывает синтез хлоридов металлов, а высокая температура обеспечивает их возгонку. Д. представляет собой мельчайшие капли р-ра гидратов хлоридов металлов. Следует учитывать возможность образования в ходе основной реакции нек-рого количества фосгена (см.), являющегося отравляющим веществом. Поэтому при проникании Д. в закрытые помещения (убежища, подвалы) может произойти отравление находящихся там людей. В полевых же условиях такой Д. практически безвреден.

Сигнальные Д. применяют для подачи сигналов в дневных условиях. В основном используют сигнальные Д. красного, желтого, зеленого и синего цвета. Наиболее распространенным методом получения сигнальных Д. является возгонка соответствующих органических красителей за счет горения термической смеси. Используют стойкие органические красители, способные быстро возгоняться при t° 400—500°, дающие Д., достаточно устойчивый в воздухе и имеющий специфическую окраску. К числу таких красителей относятся аурамин, масляный желтый АБ, родамин Б, судан красный, индиго, метиленовый синий и другие азо- и аминоантрахиноновые красители, а также их смеси.

Термическая смесь сигнальных составов включает в себя горючее (крахмал, искусственные смолы, древесные опилки), а также окислитель (перхлорат и хлорат калия). Часто в смесь дополнительно вводят специальные пламегасители, препятствующие возгоранию паров красителя. Отмечена токсичность для человека аэрозолей отдельных красителей, используемых для сигнальных Д. Что касается Д. на основе масляного желтого АБ и аурамина, то имеются данные об их канцерогенных свойствах.

Библиография: Атмосферная диффузия и загрязнение воздуха, Труды Главы, геофи-зич. обсерватории им. А. И. Воейкова, в. 238, Л., 1969; Буштуева К. А. Атмосферные загрязнения и здоровье, Гиг. и сан., № 3, с. 3, 1971;ГринХ. и Лейн В. Аэрозоли — пыли, дымы и туманы, пер. с англ., Л., 1972; Дмитриев М. Т., Иванов Л. Ю. и Ч о н E н Д е, Гигиеническое прогнозирование образования фотохимического смога в городах, Гиг. и сан., № 2, с. 8, 1973; Загрязнение атмосферного воздуха городов выбросами автомобильного транспорта, Доклад Комитета экспертов ВОЗ, сер. техн. докл. № 410, М., 1971; Загрязнение атмосферного воздуха, ВОЗ, сер. моногр. № 46, М., 1962; Зайцев Г. С. и Кузнецов А. Я. Дымовые средства и дымообразующие вещества, М., 1961; Кротков Ф. Г. Проблемы окружающей среды в деятельности ВОЗ, Гиг. и сан., № 12, с. 85, 1973; Руководство по коммунальной гигиене, под ред. Ф. Г. Кроткова, т. 1, с. 137, М., 1961; Ф у к с Н. А. и С у т у-г и н А. Г. Высокодисперсные аэрозоли, М., 1969; Izmerov N. F. Control of air pollution in the USSR, Publ. Hlth Papers № 54, Geneva, WHO, 1973.

^


Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание